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Modeling Extreme ASA & AHT values using 
Extreme Value theory 
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Abstract---EVTdeals with the stochastic behavior of the extreme values in a process which is in contrast to the Central limit theory where we model 
central tendency. Paper applies the framework on 2 key metrics (ASA & AHT) of a call center. ASA is the average speed of answering an incoming call 

that measures the service level from the customer’s perspective. AHT is the average handle time to service calls and directly relates to the cost of 
operations as an additional second of AHT can have significant impact on the costs. Statistical inference about extreme events deals with the estimation 

of the probability of occurrence of extreme events.Article gives the initial overview on how to estimate the probability of extreme stress on AHT & ASA 
that directly relates to the risk of increased costs and customer dissatisfaction. Objective of the paper is to describe how Extreme value theory can be 

applied in the Contact center space where Average Handling Time and Average speed to answer an incoming call are the key KPI’s. 

 

Data is hypothecated for illustration purpose & tool used is R software 

Content 

1) POT/GPD Theory: Model fit on AHT values 
2) GEV Theory: Model fit on ASA values 
3) Measurement of high Quantiles & Conditional Expectations 

———————————————————— 
 

 

STATISTICAL THEORY (GPD DISTRIBUTION 
FUNCTION) 

K: Stochastic variable> target AHT & ASA measure 

Function of distribution of Variable K: F(K) = P(K ≤ k) 

′u′ :Threshold level where the excess events are given by 
Y = K − u and have the following distribution 

(1) 𝐹𝐹𝐹𝐹(𝑦𝑦) = 𝑃𝑃(𝐾𝐾 − 𝐹𝐹 ≤ 𝑦𝑦|𝐾𝐾 > 𝐹𝐹) = (𝐹𝐹(𝑦𝑦 + 𝐹𝐹) −
𝐹𝐹(𝐹𝐹))/(1 − 𝐹𝐹(𝐹𝐹))As ‘u’ increases the distribution 
of stochastic variable converges to GPD. 

 

CDF (Cumulative distribution function) of GPD 

(2) 𝐺𝐺𝐺𝐺,𝛽𝛽(𝑦𝑦) = [1 − �1 + 𝐺𝐺𝑦𝑦
𝛽𝛽
�
−1
𝐺𝐺 , 𝐺𝐺 ≠ 0] 

(3) 𝐺𝐺𝐺𝐺,𝛽𝛽(𝑦𝑦) = [1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑦𝑦
𝛽𝛽
�

.
, 𝐺𝐺 = 0] 

(4) 𝐹𝐹𝐹𝐹(𝑦𝑦) = 𝐺𝐺𝐺𝐺,𝛽𝛽(𝑦𝑦) 

′ε′= tail index parameter  

′β′= scale parameter. 

Modeling Extreme values of Average Handling time 
(AHT) using GPD distribution in R software 

Dataset is aht having individual observations of average 
time spent in handling calls measured in seconds. 

Target AHT: 180 sec. Data consists of values above 180 
seconds as the focus is on the time spent beyond the target. 

No. of observations: 3000 

Dataset =“aht” Variable=“aht” 

R Packages: “evir” to model GPD distribution and “fBasics” 
for descriptive analysis. 
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Descriptive statistics 

basicStats(aht$aht) 
 
Min Mean Std.dev Kurtosis Max 
401 sec 639.18 sec 309.33 sec 39.82 5054 
 

Histogram of the “aht” 

 

Inference:  Values are skewed to the extreme right tail. 
Large deviations on the right tail are few in percentage 
terms but the magnitude impact can be significant on the 
Operational costs. 

Understanding the nature of distribution of tail 
values of the Average Handling Time (AHT) 

Empirical complementary cumulative distribution function 
(ccdf, that is, the empirical probability of the AHT 
exceeding any given threshold) CCDF measurement 
estimates the CCDF of the random variable  ′𝑒𝑒′as defined 
by the following equation: 

(5) 𝑒𝑒 = 𝑒𝑒/𝐸𝐸(𝑒𝑒) 

The following equation defines the CCDF of′𝑒𝑒′ 

(6) 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑒𝑒(𝑒𝑒) = Pr{𝑒𝑒 > 𝑋𝑋} = Pr{𝑒𝑒 > 𝑋𝑋.𝐸𝐸(𝑒𝑒)} 

Pr {e}: Probability of an event e (probability of the event 
that instantaneous value of AHT exceeds the mean AHT by 
at least X dB) 

The below function plots the empirical ccdf of AHT values 
with both the axis on logarithmic scales. Vertical axis 
models probability of exceeding AHT levels (on Log scale), 
Horizontal axis models log of AHT levels 

emplot(aht$aht,alog = "xy") 

 
The linear plot of the ccdf function describes the fat-tailed 
nature of the data and Pareto-type distribution of AHT’s.  

The graph of QQ plot below describes the Fat-tailed nature 
with hypothesized exponential distribution. 

qplot(aht$aht) 

 
 

 

Fitting the GPD to threshold exceedances 

Fitting the GPD distribution requires the Threshold level. 

Suppose  ′𝐾𝐾′is the random loss and𝐹𝐹 > 0the mean excess 
loss variable is the conditional variable  𝐾𝐾 − 𝐹𝐹|𝐾𝐾 > 𝐹𝐹and 
the mean excess loss function  𝑒𝑒𝐾𝐾(𝑑𝑑)is defined by: 

(7) 𝑒𝑒𝐾𝐾(𝑑𝑑) = 𝐸𝐸(𝐾𝐾 − 𝐹𝐹|𝐾𝐾 > 𝐹𝐹) 
meplotfunction plots the Mean excess on the threshold 
levels. A positive gradient & linear nature of the mean 
excess plot indicates fat tails. 

meplot(aht$aht,omit=50) 

 

 

 

 

 

 

 

Fig. 1. Histogram of Average Handling time.  

 

 

 

 

 

 

 

 

Fig. 2.CCDF Function Plot. 

 

 

 

 

 

 

 

 

Fig. 3. QQ Plot reflects fat tails.  
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Reasonable threshold =1000 seconds with 247 observations 
beyond the threshold. 

 

Next step is to apply the GPD distribution on the tail 
values of the AHT dataset 

gpd:fits the GPD distribution Parameter estimates Tail 
index ′𝛆𝛆′and Scale parameter ′𝛃𝛃′. 

GPDdistribution=gpd(aht$aht,threshold =1000) 
GPDdistribution$par.estsgives the estimates of ′ε′ and ′β′ 
 

𝐺𝐺𝛽𝛽 
  0.2161968 319.1114115 
GPDdistribution$par.sesgives the standard error for 
estimates of′𝐺𝐺′ and ′𝛽𝛽′ 
 

εβ 
0.07349516 30.70797805 
 
To test how well the GPD distribution fits the empirical 
excess distribution we will use 
theplot(GPDdistribution)functionon the tail of the original 
distribution and fitted GPD distribution. 

Below plot shows that GPD distribution fits nearly well to 
the excess empirical Values

 
Basis the Generalized Pareto distribution function that 
gives the cumulative probability distribution we can find 
the cumulative probability value for the extreme events. 

(8) 1 − 𝐺𝐺𝐺𝐺,𝛽𝛽(𝑦𝑦) = 1 − [1 − �1 + 𝐺𝐺𝑦𝑦
𝛽𝛽
�
−1
𝐺𝐺 , 𝐺𝐺 ≠ 0] 

1-K1200=1-[1-(1+0.2161968*1200/319.1114115)^(-
1/0.2161968)]=6.37% 
1-K1500=1-[1-(1+0.2161968*1500/319.1114115)^(-
1/0.2161968)]=3.9%% 
 
Probability of 1200<ASA<1500 = K1500-K1200=2.47% 
 
Estimating the large quantiles using the fitted GPD 
model 

Function:gpd.qon the tail plot of the fitted GPD 
distribution.Thetailplotfunction plots the tail of AHT 
distribution while gpd.qalong with pp=required 
quantile&p=Confidence level 
 
TailPlot=tailplot(gpdfit) 
 
gpd.q(TailPlot,pp=0.99,ci.p=0.95) 
Lower CI Estimate Upper CI  
1733.302 1850.596 2003.859 
 
There’s a 1% probability that the AHT will cross 1850.596. 
Conditional quantile (sfall)estimate gives the conditional 
expected value of AHT beyond the 99% quantile level. 
 
gpd.sfall(TailPlot,0.99) 
Lower CI Estimate Upper CI  
2220.630 2492.348 3016.419 
 
If the 99% quantile limit of AHT 1850.596 seconds is 
breached then the Expected value of AHT is 2492.348 
seconds 

 

 

 

 

 

 

 

Fig. 4.Mean Excess Vs threshold.  

 

 

 

 

 

 

 

 

Fig. 5 
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STATISTICAL THEORY (GEV DISTRIBUTION FUNCTION) 
 
Continuous probability distribution function that uses 
Block maxima approach of a sequence of iid random 
variables 
 
The GEV distribution 

(9) Gε,σ, μ(y) = exp[−�1 + ε(y−μ)
σ

�
−1
ε , (1 + ε(y−μ)

σ
) >

0, 𝑖𝑖𝑖𝑖𝐺𝐺 ≠ 0] 
(10) Gε,σ, μ(y) = exp[−exp(− y

σ
), y ∈ R if ε = 0] 

Gε,σ, μ(y) Incorporates the three (Fisher-Tippett) type’s 
families 
 
Frechet:ε > 0  Fat tails 
Gumbel:ε = 0light tails 
Weibul:ε = 0 lighter tails 
 
Descriptive analysis: ASA Data (Average Speed to 
answer the calls).  
R “evid” package to model the ASA values. 
 
basicStats(asa$asa) 
 
Min Mean Std.dev Kurtosis Max 
51 sec 179.64sec 12.29 sec 7.92 1286 sec 
 
Kurtosis>3 indicates fat tails 
 

 
 
 
Modeling ASA extreme values using GEV 
distribution 
 
fgev(asa$asa)function gives the estimates of GEV 
distribution as Location (μ), Scale (σ),tail index (ε).  
 
Estimates 
locscale   shape   
72.514  30.377   1.196   
 
Standard Errors 
locscaleshape 
1.97085  2.88006  0.08836 
 
confint(fgev(asa$asa))gives 95% confidence level of 
parameter estimates. Confidence interval of the tail index 
does not includes 0 so we can reject the null hypothesis of 
shape (ε) =0 
 
2.5 %   97.5 % 
loc68.651631 76.377230 
scale24.732403 36.022047 
shape1.023238  1.369593 
 
Since (ε) >0Frechet distribution is the possible candidate to 
model maximum ASA values. Greater accuracy for the 
confidence intervals is usually attained by the profile 
likelihood. plot(profile(fgev(asa$asa)),ci = c(0.95, 0.99) 

 

 

 

 

 

 

 

Fig. 6 

 

 

 

 

 

 

 

 

Fig. 7 
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Diagnostic plots of the fitted GEV distribution 
gev.diag(gev.fit(asa$asa)) 
 

 
 
 
Probability plot shows a reasonable GEV fit withFrechet 
distribution being nearly adequate. 
 
Cumulative probability value for the extreme events can be 
calculated as. 

(11) 1 − 𝐺𝐺𝐺𝐺,𝜎𝜎, 𝜇𝜇(𝑦𝑦) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒[−�1 + 𝐺𝐺(𝑦𝑦−𝜇𝜇 )
𝜎𝜎

�
−1
𝐺𝐺 , (1 +

𝐺𝐺(𝑦𝑦−𝜇𝜇 )
𝜎𝜎

) > 0, 𝑖𝑖𝑖𝑖𝐺𝐺 ≠ 0] 

1-k200=1-exp(-(1+1.196*(200-72.514)/30.377)^(-1/1.196)) 
=9.01% 
1-K250=1-exp(-(1+1.196*(250-72.514)/30.377)^(-1/1.196)) 
=6.35% 
 
Probability of 200<ASA<250 = k250-k200=3.84% 

CONCLUSION 
The Primary objective of the paper was to describe how the 
Extreme Value Theory and the aligned distributions like 

Generalized extreme value distributions & Peak over 
threshold approach can be used to derive statistical 
inferences around extreme values of AHT & ASA KPI’s. 
Central limit theorem would not be able to provide 
inferences around extreme events that may have a 
significant impact in terms of magnitude but can be 
frequency could be really low. 
 
Extreme Value theory has its applications across various 
domains and with this paper the idea was to give an 
example of how it can be used in the contact center domain. 

REFERENCES 
 

[1] McNeil, Frey, and Embrechts (2005) “Quantitative Risk 
Management: Concepts, Techniques and Tools” 

 
[2] Introduction to R for Quantitative Finance: By: Agnes 

Vidovics-Dancs; Daniel Havran; Dr. Edina Berlinger; 
GergelyDaróczi; MártonMichaletzky; Michael Puhle; Péter 
Csóka; Dr. Kata Váradi; ZsoltTulassay 

 
[3] Topics in Data Analysis Using R in Extreme Value Theory : 

By Helena Penalva1,Manuela Neves2 and Sandra Nunes3 
 

[4] Stephenson, A. G. (2002): evd: Extreme Value Distributions. 
 

[5] Coles, S. (2001). An Introduction to Statistical Modeling of 
Extreme Values.Springer-Verlag, London 
 

[6] Beirlant, J, Goegebeur, Y., Teugels, J. and Segers, J. (2004). 
Statistics of Extremes:Theory and Applications. Wiley, 
England. 
 

[7] Stephenson, A. G. (2012): ismev: An Introduction to 
Statistical Modeling of Extreme Values. Original S functions 
written by Janet E. Heffernan with R port and R 
documentation. R package version 1.38, URL 
http://CRAN.Rproject.org/package=ismev. 
 

[8] Reiss, R. D. and Thomas, M. (2007). Statistical Analysis of 
Extreme Values: With Applications to Insurance, Finance, 
Hydrology and Other Fields. Third Edition, Springer Verlag 
 

[9] Embrechts, P., Kluppelberg, C. and Mikosch, T. (2003). ¨ 
Modelling Extremal Events for Insurance and Finance. 
Springer-Verlag, London. 

 

 

 

 

 

 

 

 

Fig. 8 

 

 

 

 

 

 

 

 

Fig. 9. Diagnostic Plots 
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